Как найти множество значений функции

Множество значений (область значений) функции — все значения, которые принимает функция в ее области определения. Другими словами, это те значения у, которые вы получаете при подстановке всех возможных значений х. Все возможные значения х и называются областью определения функции. Выполните следующие действия для нахождения множества значений функции.

1. Метод оценки (границ).

Для нахождения множества значений функции сначала находят множество значений аргумента, затем, используя свойства неравенств, отыскивают соответствующие наименьше и наибольшее значения функции функции. Если есть возможность путем тождественных преобразований получить функцию, которая на всей области определения или на заранее заданном множестве является непрерывной и либо только возрастающей либо только убывающей, тогда используя свойства неравенств оценивают множество значений  вновь полученной функции.

Пример 1. Найдите множество значений функци y=5 —.

Из определения квадратного корня следует, что 4 — xzbr.gif» class=»vr»/> 0, решая квадратичное неравенство получаем, что -2x2. разобьем промежуток [-2; 2] на два промежутка [-2; 0] и (0; 2]. Первому промежутку соответствует неравенство -2x0, а второму соответствует 0 < x2. На первом промежутке переменная х принимает неотрицательные значения, а на втором — положительные.

Возведем в квадрат каждое из этих двойных неравенств, в результате получим 0x24.
Умножим все три части неравенства на  — 1,  получим неравенство

— 4— x20.
Прибавим к трем частям неравенства 4 и получим

0  4 — x2  4.
Введем вспомогательную переменную предположив, что

 t = 4 — x2, где 0  t4.

Функция y =на указанном промежутке непрерывна и возрастает, поэтому свои наименьшее и наибольшее значения принимает на концах промежутка и, следовательно, 0   2 тогда произведя обратную замену переменных получим неравенство  0  2. Прибавим к трем частя последнего двойного неравенств 5, умножив его предварительно на — 1, получим 3  5 —  5.

Множество значений функции y = 5 —является множество [3; 5].

Пример 2. Найти множество значений функции y = 5 — 4sinx.

Из определения синуса следует, -1sinx1. Далее воспользуемся свойствами числовых неравенств.

-4— 4sinx4, (умножили все три части двойного неравенства на -4);

15 — 4sinx9 (прибавили к трем частям двойного неравенства 5);

Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением на всей области определения, если таковые существуют. В данном случаее множество значений функции y =5 — 4sinxесть множество [1; 9].

Пример 3. Найти множество значений функции y = sinx + cos x.

Преобразуем выражение sinx + cos x  = sinx +sin(— x) =
= 2sin((x  +— x)/2)cos((x ++ x)/2) = 2sin{)cos(x +) =
=cos(x +).

Из определения косинуса следует -1cosx1;

 -1cos(x +}1;

 —cos( x +);

Так какданная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением, если таковые существуют, множество значений функции y =cos(x +) есть множество [-;]. Множество значений  функции

y = sinx + cosx есть множество чисел [-;].

Пример 4. Найти множество значений функции y = 3sinx + 7cos x.

Преобразуем выражение 3sinx + 7cos x. Заметим, что 32 + 72 = 9 + 49 = 58 =Умножим и разделим каждое слагаемое наfr-dii
3sinx + 7cos x =(sinx +cosx).
Так как< 1 и<  1. и ()2 + ()2= 1, то найдется такое числочто cos=и sin=. Тогда 3sinx + 7cos x =(cossinx + sincosx)  =sin(+ x).

Из определения синуса следует, что при любом х справедливо неравенство -1sinx1 и, из периодичности этой функции, следует, что

-1 sin(+ x) 1, тогда умножая все части двойного неравенства на, имеем —sin(+ x).

Множество значений функции y = 3sinx + 7cos xявляется множество [ —;].

2. Метод применения свойств непрерывной функции.

Среди числовых значений, принимаемых на заданном отрезке непрерывной функцией, всегда имеется как наименьшее pначение m, так и наибольшее значение М. Множество значений функции заключено между числами m и M. Это основные утверждения положенны в основу поиска множества значений функции в следующем примере.

Пример 5. Найти множество значений функции y = 2sinx + cos2x на отрезке [0; p].

Решение.

D(y) = R. Данная функция на всей области определения непрерывна, поэтому на отрезке [0; p] существуют такие точки, в которых функция принимает свои наименьше и наибольшее значения. Эти точки либо критические, либо концы отрезка.

1) найдем производную данной функции

2) y’ = 2cosx — 2 sin2x = 2cosx — 4sinxcosx = 2cosx(1 — 2sinx)

3) Область определения производной R.

3) Найдем ее критические точки. y’ = 0. 2cosx(1 — sinx) = 0, это уравнение равносильно совокупности двух уравнений:
cosx = 0 и 1 — 2sinx = 0.
Решая каждое из них получим:
x =+n, где nZи x = (-1)n+k, где kZ.

Отрезку [0;] принадлежат три критические точки: x =, x =, x =.

Вычисляем значение функции на концах промежутка и в критических точках:
y(0) = 1, y() = 1, y() = 1,5, y() = 1,5, следовательно, наименьшее значение функции на отрезке[0;] равно 1, а наибольшее значение функции на этом же отрезке равно 1,5. Исходя из выше изложенный утверждений Е(у) = [1; 1,5].

3. Метод приведения к уравнению относительно х с параметром у.

Возможна следующая схема применения этого метода:

Пусть функция задана формулой y = f(x).

2) Рассматриваем функцию как уравнение с параметром у.

3) Выясняем при каких значениях у уравнение f(x) — y = 0 имеет хотя бы один корень. Полученное множество будет множеством значений заданной функции.

Пример 6. найдите множество значений функции.

Решение.

x2 + 5 > 0 при любом х, следовательно, D(y) = R. Рассматриваем формулу:

, как уравнение с параметром у. Это уравнение равносильно уравнению y(x2 + 5) = x2 — 4x + 4;

x2 (y — 1) + 4x + 5y + 1 = 0;

1) Если у = 1, то данное уравнение равносильно линейному уравнению 4х + 6 = 0, которое имеет один корень.

Если у1, то квадратное уравнение, которое мы получили в результате выше изложенных соображений, имеет корни тогда и только тогда, когда его дискриминант не отрицателен.

D/4 = 4 — (y — 1)(5y + 1)0;

— 5y2 + 4y +50;

5y2 — 4y — 50; Вычислим четверть дискриминанта и корни квадратного трехчлена 5y2 — 4y -5:

D/4 = 4 + 25 = 29

y = 2 —и y = 2 +.

Таким образом квадратное уравнение имеет корни,если параметр y[2-; 1) и (1; 2 +],

Учитывая пункты 1) и 2), делаем вывод, что множество значений изучаемой функции — [2 —; 2 +].

4. Метод непосредственных вычислений.

В случае, когда область определения функции содержит конечное число значений аргумента или  количество значений не велико, или множество значений аргумента может быть описано с помощью конечного числа формул, так бывает в случае рассмотрения тригонометрических функций, обычно множество значений функции находят путем непосредственных вычислений.